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AB ST R AC T 

The way an asteroid or other atmosphereless solar system body varies in bright- 

ness in response to  changing illumination and viewing geometry depends in a very 

complicated way on the physical and optical properties of its surface and on its 

overall shape. We summarize the formulation and application of recent photometric 

models by Hapke and by Lumme and Bowell. In both models, the brightness of 

a rough and porous surface is parametrized in terms of the optical properties of 

individual particles, by shadowing between particles, and by the way in which light 

is scattered among collections of particles. Both models succeed in their goal of 

fitting the observed photometric behavior of a wide variety of bodies, but neither 

has led to a very complete understanding of the properties of asteroid regoliths, in 

part because of the restricted nature of groundbased photometric observations, but 

also because the parameters in the present models cannot be adequately constrained 

by observations of integral brightness alone. 
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1. INTROD U 'CTION 

Since the last Tucson asteroids conference (Gehrels 1979), several models of 

light scattering in particulate surfaces, which are applicable to asteroids and other 

atmosphereless bodies, have been developed or refined. It is our purpose in this 

paper to  summarize and compare results from two such models: by Hapke and 

by Lumme and Bowell. In particular, we have collected all the principal formulae 

together in one place, so that recipes for fitting photometric data, both disk-resolved 

and disk-integrated, are readily available to interested readers. First, however, it 

will be useful to sketch some of the progress that has been made during the last 

decade. 

The photometric model developed by Hapke has been described in Hapke (1981, 

1984,1986) and Hapke and Wells (1981). It is assumed that geometric optics is valid. 

The contribution from singly scattered rays is derived exactly. The opposition effect 

is assumed to be due to hiding of the shadow of one particle on another and is 

derived by an approximation to the Seeliger-Irvine formulation (Irvine 1966), with 

significant differences that allow for a distribution of particle sizes and also include 

a more rigorous derivation of the extinction, scattering and absorption coefficients 

(Hapke 1986). The multiple-scattering contribution is calculated from a modified 

two-stream solution of the radiative transfer equation for isotropic scatterers and 

with a collimated source, which results in an analytic approximation to  the Chan- 

drasekhar H -functions. 

Lumme and Bowell's model, given in its first form by Lumme and Bowell 

(1981a; hereafter LBa) also assumes geometric optics to  be valid. Single and multiple 

components of light scattered in particulate surfaces are treated separately. In 

single scattering, a number of phase functions, due specifically to  single particles, 

shadowing, and roughness, are combined; whereas multiple scattering is calculated 

using an approximate theory developed by Lumme and Reitsema (1978). In LBa, 

it was concluded that the opposition effect was controlled by porosity. However, 

in the present paper, recent work by Riluinonen et ai. (1988) on backscattering by 
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crystalline particles is invoked to explain what Lumme et al. (1987) have termed 

an opposition spike, apparent at phase angles smaller than a degree or two and 

present mainly in  the phase curves of icy satellites. Such an esplanation for sharp 

opposition spikes was apparently first proposed by Trowbridge (1978). Working 

along similar lines and following Morozhenko and Yanovitsky (1971), Shkuratov 

(1983) has imputed what he calls an optical concentration of light toward the source; 

he includes the effects of focussing, glory, and interference. 

Both Hapke’s and Lumme and Bowell’s work have spawned applications, too 

numerous to  detail here, aimed at fitting and interpreting photometric data on so- 

lar system bodies and laboratory samples. Discussions by Helfenstein and Veverka 

(1987) and Helfenstein (1988) give good summaries of work using Hapke’s model on 

Mercury and the Moon (Hapke 1984, Buratti 1985, Veverka et al. 19SS), Jovian and 

Saturnian satellites (Buratti 1983 and 1955, Helfenstein 1986, Simonelli and Veverka 

1987), Uranian satellites and rings (Smith et al. 1986, Hapke 1986), and laboratory 

samples (Goguen 1981, Hapke and Wells 1981, Johnson et al. 1983, Mustard and 

Pieters 1987, Clark et al. 1988). Domingue and Hapke (1988) and Helfenstein and 

Veverka (1958) have used Hapke’s model to fit asteroid phase curves. Lumme and 

Bowell’s model was first applied to asteroids in a preliminary way by Bowell and 

Lumme (1979), and then more fully to a variety of atmosphereless bodies by Lumme 

and Bowell (1981b). Further work on asteroids has concerned pole and shape de- 

termination (Poutanen et al. 1951, Lumme et al. 1986, Magnusson et al. 1988), the 

effects of shape and albedo features on lightcurves and phase curves (Karttunen 

1988, Karttunen and Bowell 1988), and the derivation of a two-parameter system 

for calculating magnitudes (hfarsden 1986, Bowell et al. 1989). Other applications 

have been to the Moon (Lumme and Irvine 1952), Phobos and Deimos (Pang et al. 

1983b), Jovian and Saturnian satellites (Lockwood et al. 19SOa, 1980b, Pang et al. 

1981, Pang et al. 1983a), the zodiacal cloud (Lumme and Bowell 1985), and labo- 

ratory samples (Lumme et al. 1980). 

In the following two sections, we outline Hapke’s and Lumme and Bowell’s 
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photometric models. On the whole, we have chosen to adhere to the nomenclature 

and notation used in the original publications of the models, and have accordingly 

separately defined all the quantities used in each section. Although this has led to 

some repetition and some slightly different terminology for a few parameters, it has 

allowed each of the two treatments to be internally complete and consistent. In 

Section 4, we present fits to  a selection of disk-resolved and disk-integrated data. 

Then, in Section 5, we compare and contrast the two models, and finally give some 

thoughts on possible future developments. 

2. HAPKE’S PHOTOMETRIC MODEL 

2.1. Photometric Relations for a Smooth Surface 

The reflectances are functions of the angle of incidence i, the angle of emergence 

(viewing angle) e ,  the phase angle C Y ,  and the azimuth angle between the planes of 

incidence and emergence cp. These are related by 

cos CY = pop + sin i sin e cos cp 

110 = cos i 

p = cose. 

What is termed the bidirectional reflectance r is given by 

in which 20 is the average single-scattering albedo, B ( a )  is the opposition effect func- 

tion, p ( a )  is the average single-particle scattering function, and H is an analytical 

approsimation to Chandrasekhar’s H-function for isotropic scatterers (cf. Eq. (7)). 

For a mixture of particles of albedos wi, densities p; ,  diameters Di, and mass 

fractions M i ,  
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Thus the reflectance of a mixture may be calculated from the reflectances of the end 

members. The opposition effect function is 

r B(a)  = Bo/[l+ tan(a/2)/h] 
In P-l 
1-P h = n -  < a > < r >  (4) 

Here, h is the angular width of the opposition effect, n is the number of particles 

per unit volume, P is the porosity, and < cr > is the average estinction cross-section 

weighted by number. Bo is the amplitude of the opposition effect. If the opposition 

effect is due only to  the hiding of shadows between regolith particles, then Bo 5 1, 

and BO is the fraction of wp(0) scattered from the portion of a particle surface that 

faces the source. However, individual particles can also be rough, composite, or 

behave like corner reflectors, and can thereby contribute to  the opposition effect; 

this is taken into account by allowing Bo to exceed unity. (Rigorously, another term 

of the same form as B(a)  multiplying p ( a )  is required, but that would introduce 

two more parameters. Hence, B(a)  should be interpreted as a composite opposition 

effect that may involve both the soil porosity and individual particle complexity.) 

The single-particle scattering function p(a)  is empirically expressed either as an 

N-term Legendre polynomial expansion, 

N-1 

n=l 

where a,, are constants and Pn(a) is the Legendre polynomial of degree n, or by a 

Henyey-Greenstein function of the form 

p ( a )  = (1 - P)/( 1 - 2b cos CY + P ) 3 ’ ? ,  (6) 

as convenient. Usually, two or three terms suffice in the Legendre expansion. Since 

diffraction is not appropriate for particles in intimate contact, p ( a )  does not include 
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a diffraction term. Finally, 

Note that H is a function of both angle and single-scattering albedo. 

The so-called bihemispherical reflectance TO is calculated from 

To = (1 - Y)/(l+ 7). 

The direclional-hemispherical reflectance for a two-term p ( a )  of the form 

p(a) = 1 t acosa  

is given by 

(9) 

For a spherical planet of uniform albedo, with p ( a )  given by Eq. (9), the Bond 

albedo for a two-term p(a) is 

A B  = T o p -  -- +0.69a(l+y)?];  
3 1 + y  

the physical or geometric albedo is 

Ap = ( ~ / 8 ) [ ( 1 +  &)P(O) - 11 +  TO/^ + ~: /6) ;  (12) 

and the integral phase function is given by 
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2.2. Photometric Relations for a Rough Surface 

The derivation of the photometric functions of a macroscopically rough surface 

takes into account two major effects: (1) Shadows: One part of the surface can 

prevent another part from being illuminated or from being seen by the detector. (2) 

Eflectiue surface tilt: Portions of the surface tilted away from the source or detector 

have a greater probability of not being illuminated or seen than portions of the 

surface tilted toward the source or detector, resulting in the average surface being 

tilted toward the source and detector. 

It is assumed in the model that the surface is made up of unresolved facets 

tilted at  various angles. The angles of tilt are assumed to be distributed uniformly 

in azimuth and described by a function A(B), where 8 is the angle between the 

normal to  the facet and the normal to the mean surface. In Hapke (1984), A(8) was 

assumed to  be given by a Gaussian distribution in tan8. The sizes of the facets are 

large compared to the extinction mean free path l / n a ,  but small compared to the 

detector footprint on the surface of the body. Double and higher-order reflections 

between facets are ignored. However, multiple scattering between grains of soil 

within each facet is included. 

The roughness is described by a characteristic slope angle 8, defined by 

TI2 
tang = (2/7r) tanOA(8)do. (14)  

Shadowing is described by a shadow function S( i , e ,a )  and surface tilt by 

replacing 11 and 1'0 by effective cosines pe and /10e7 respectively. 

The bidirectional reflectance of a rough surface is given by 

Let 
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Then S , p e ,  and pOe have slightly different forms depending on the relative values 

of i and e. 

I f i s e :  

where 

C( W ,  8) = 1 - (0.0488 + 0.00418 ? ) T O  - (0.338 - 0.00498 ? ) T ; .  (20) 
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And the integrul phase function of a spherical body with a rough surface is 

derived from 

where K(cr,g) is given in Table I. For (Y < 60°, an analytical approximation is 

3. LUMME AND BOWELL’S PHOTOMETRIC MODEL 

3.1. Disk-Resolved Brightness 

In their original work (LBa), Lumme and Bowell gave the reflection coefficient 

KT in the form 

(23) 
- I - = 7rT = 7 r T 1 - t  7 r T m ,  F 

where RF is the incident flux, 7 r l  the emergent flux, 7 r q  the contribution from single 

scattering, and Arm that from multiple scattering. Explicitly, 

where t q  is the single-scattering albedo, m; is the single-scattering albedo according 

to the “similarity relations” approximation, P is the single-particle phase function, 

is the mutual shadowing function (normalized to unity a t  a = O”, as all as have 
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been in the following), u is the fraction of the surface covered with “holes” (called 

q in LBa; u is used here to  avoid confusion with the symbol conventionally used for 

the phase integral), p is a measure of the surface roughness (roughly, the tangent 

of the mean surface slope at the millimeter scale), and h is a multiple-scattering 

function (approximated by Chandrasekhar’s H function). In addition, 

1 110 = cospcos(x - a), 

where p is the photometric latitude and X the longitude. The shadowing function 

is given by the expression 

1 In 1-D cos x + cos( x - a) 
sin a 

in which 1Fl is a degenerate hypergeometric function and D is the volume density 

of the regolith, here assumed constant with depth. Eqs. (23-26) summarize Lumme 

and Bowell’s model for surface brightness. 

Y=- 2.4 7 

Before studying the consequences and results of Lumme and Bowell’s model, 

the following should be noted: (1) The singly scattered flux ? T T ~  does not tend to 

zero at the limb ( p  -, 0). (2) The principle of conservation of energy is not seriously 

violated: A straightforward check may be made by directly integrating I / F  to  yield 

the Bond albedo for the case of conservative scattering, Le., q, = 1, with the result 

that there is a slight underestimate. (3) The shadowing function 9 s :  After Eq. (17) 

(LBa), an approximation In(1 - z) x -z is given and stated to be valid only for 

small volume densities, but if D is large, the correct expression, Eq. (26), should be 

used. 
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3.2. Single-Particle Phase Function 

Both Hapke and Lumme and Bowell have used a physical model to parametrize 

most of the effects that play a role in light scattering by regoliths, with the exception 

of the single-particle phase function P(a). Appropriate specification of this function 

is essential for the interpretation of the integrated brightness data, which are also 

functions of the same variable. Even for disk-resolved data a t  a fixed a , P ( a )  is 

important because it determines the absolute scale for single scattering, but only 

if there exist disk-resolved data at several widely separated phase angles can one 

hope to  solve for P ( a )  independently. Hitherto, Lumme and Bowell have been using 

either isotropic scattering (P 1) or a single Henyey-Greenstein phase function, 

the latter of which is an analytical representation having no physical basis. Hapke 

has on occasion chosen to use a three-term Legendre expansion (having two free 

parameters), which also lacks physical justification. 

To provide deeper insight into P, two further sources have been called upon: 

Microwave analog measurements made by Giese et al. (1978) on realistic non- 

spherical particles, and theoretical ray-tracing calculations for statistically rough 

particles by Peltonienli et ul. (1988). All four of the absorbing fluffy or rough par- 

ticles measured by Giese et d. have refractive indices in the range 1.43 < n < 1.65, 

and the imaginary part times the size parameter (a descriptor of absorption) on the 

order of unity, making them well suited for treatment of the photometry of low- 

albedo bodies (Mercury, for example). IVhen properly normalized (the integral of 

P over 47r equals one) the measurements indicate that all four particles have small, 

roughly linear backward scattering for 0' 5 a 5 go", strong forward scattering for 

a 2 120°, and that P is similar for all particles. The data can be well represented 

(Fig. 1) by an empirical function, somewhat different from that used by Peltoniemi 

et ul., of the form 
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where the expression for F comes from normalization and 

B = P(0") = 0.95 

F = P(180") = 16.15 

b = 0.4 rad-' 

f = 4.0 rad-'. 

Diffraction is not included in this function. A two-term Henyey-Greenstein function 

does not give such a good fit, and a high-degree Legendre function would be required 

to provide an equally good fit. Equation (27) suggests that, in the backward regime, 

P(Q) x B - Bba. (29) 

Using geometric optics, Peltoniemi et  al. (1988) have theoretically studied light 

scattered by statistically deformed spheres. They assumed a log-normal distribution 

of the particle radius vector, and varied both the amount of deformation and the 

optical parameters. It is clear from their work that Eq. (27) is a good approximation, 

with values in the range of Eq. (28). 

A recently discovered sharp opposition effect , here termed the opposition spike, 

has been observed in the phase curves of some high-albedo objects at very small 

phase angles. It has led to the addition here of another component to P. Obviously, 

single-particle scattering of the  type characterized by Eq. ( 2 7 )  is suitable only for 

irregular particles. Ices and regolith-forming minerals can, however, exist in crys- 

talline form. Some of these crystals have right-angle troughs, making them very 

effective backscatterers (retroreflectors). Muinonen et al. (19SS) have calculated the 

light-scattering properties of a number of common crystal forms by using ray-tracing 

techniques, allowing the optical constants to vary. The resulting calculated phase 

curves can be well fitted in the important phase angle range 0.1" 5 cr 5 10" by 
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where a in  degrees. A more rigorous but more complicated approximation has been 

given by bfuinonen et  al. (1955). The unknown scale factor A 2 10 results from the 

use of geometric optics, which breaks down at a = Oo, where the rigorous theory 

of physical optics should be used (such a theory does not exist for non-spherical 

particles). Eqs. (27) and (30) can now be combined as a plausible mean single- 

particle phase function. If v stands for the fractional volume occupied by crystals 

and 1 - v that occupied by irregular particles then, for a 5 loo", 

( P(a)  = vA@,,(a) + (1 - v)Be-bQ 

vu 
V A  + (1 - v ) B '  

3.3. Disk- Integrated Bright ness 

The disk-integrated brightness of a spherical body of unit radius can be calcu- 

lated from 

R / ?  

L(a)  = R F  I,,, dP C O S V  IT'? r(X,p,a)cosXdX = xFR(a) .  
a-?r/? 

(32) 

The classical integrated descriptors of brightness can be conveniently expressed 

in terms of R(a): 

It might be a good policy to  refer to R(a)  as the pseudoalbedo of a body at  fixed 

phase angle a lest there be confusion with the geometric albedo p .  
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Equation (32) can be transformed into the form 

= 5 LTf2 dpcOs2 p /=I2 [ q c o s p  cos X)h(cosP COS(X - a)) - 13 
a-irf2 

R M ( 4  2n 

dX cos x cos( x - a) 
cos x + cos( x - a )  X 

20 = 1 - cosa 

z1 = zo - P sin cy, 
0.6 

i 

(34) 

where @ p  is given by Eq. (31). In deriving the expression for @ R ,  two approximations 

have been used: 

1 LTf2 cps3pd/3 x x i 4  
w + cosp 1 + 1.2,. 

both of which are accurate at  the 1% level. 

Since @ I  and @bf are not known, 91 and @2 as defined by Bowell et al. (1989) 

are adopted, as follows: 
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W = exp( -90.56 tan2 3.) 
Ci sin a 

0.119+1.341 sin a-0.754sin2 a @;s = 1 - 

= exp [ - Ai(tan $x)”i] 

A2 = 1.862 Ai  = 3.332 

B1 = 0.631 

C1 = 0.986 

B2 = 1.218 

C2 = 0.238. 

For iD1, the best nonlinear least-squares solution was sought with the four param- 

eters b, D,p, and 0. Because the opposition spike was not manifestly present in 

the data set used by Bowell et al., it is natural to  set c [cf. Eq. (31)] equal to  

zero. However, properly determined h-functions are not yet available to explain the 

empirical function @ p 2  (or @ M ) ,  which is in any case somewhat steeper than would 

be derived from classical radiative transfer theory. This matter is currently under 

investigation. Solution values for the parameters in G1 are 

b = 0.21 rad-’ r I D = 0.24 

p = 1.34 I u = 1.00, 

(37) 

for which the rms (relative) error is 1.3%. It must be emphasized that the solution, 

Eq. (37), is not unique, escept for D, and that a strong correlation exists between 

parameters. To see this explicitly, b and u can be constrained to  be consistent with 

the Mercury disk-resolved data ( b  = 0.35 rad-l, u = 0.71; cf. Section 4.1). Whence, 

solving only for D and p,  one obtains 
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D = 0.22 f 0.04 

p = 1.7 f 0.3, 

with a slightly larger rms. 

To explain the opposition-spike data, the effect of crystals is taken into account 

by rewriting Eq. (34) in three-parameter form: 

F, = @I@, 

a1 = (1 - c)( 1 - Q ) l O -  0.4H 

a2 = ~ 1 0 - O . ~ ~  

I 
0.4H b = ~ ( 1 -  Q ) l O -  9 

(39) 

where VobS is a reducek observed magnitude, @ I  and @p2 are gLv-en uy Eq. (36), a, 
is given by Eq. (30), and H V(0"). 

4. MODEL FITS TO SELECTED PHOTOMETRIC DATA 

Often the integral phase curve of an asteroid is known only for a small range 

of phase angles: a < 25O, say. Over this restricted portion of the phase curve, some 

of the parameters in both Hapke's and Lumme and Bowell's formulations have 

similar effects on @(a) ,  and it is usually very difficult to disentangle them. Hence, 

a unique interpretation of the phase curve in terms of the physical properties of the 

asteroid is usually not possible from the integral phase curve alone. Furthermore, it 

is not possible to obtain the single-scattering albedo, which determines the ratio of 

multiply to  singly scattered radiation, from the integral phase curve alone, although 

the single-scattering albedo can sometimes be constrained by measurements of the 

geometric albedo. 
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However, if the integral phase curve is known over a wide range of phase angles 

(from less than 2" to greater than go", say) and if the geometric albedo is known, 

then it is sometimes possible to obtain a unique fit and physical interpretation. 

If disk-resolved data are available over a wide range of phase angles, then it is 

possible to separate these effects and thereby obtain unique values of the photometric 

parameters and to interpret them in terms of physical properties of the surface. 

4.1. Disk-Resolved Datu 

Disk-resolved photometry of Mercury has been taken from Mariner 10 orange- 

filter image FDS 2577. It consists of radiances observed at a = 77' and normalized 

to those of a Lambert surface illuminated vertically and observed at zero phase 

angle. In Fig. 2, the data have been fitted using Hapke's model with parameter 

values as given in Table IV. 

To model the Mercury data using Lumme and Bowell's formulation, Eq. (24) 

is written in the following form, noting that Q s  = 0.5, since a >> 0": 

WO 
a1 = --P(77")a I 4 

e0 

PO fl = - 
P + P O  

a2 = -P(77')(1- 0) 
4 

I 
Using the Mariner 10 data both for ,f3 = 0" (photometric equator) and X = 50" 

(meridian), the free parameters a l ,  a?,  p ,  and a; were calculated by nonlinear 

least squares, with the result that x2 was most sensitive to ZJ;, thus imposing the 

constraint 0.44 5 n; 5 0.52 by the 2-a criterion. The dependence on p is relatively 

weak because both a1 and a? are small quantities. From the derived values of al 
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and a2, one can deduce that 

WO -P(77') = 0.051 
4 S u = 0.71 

1 1.0 <p 5 1.5. 

As can be seen from Tables I1 and I11 and Fig. 3, the fits are good. 

It is notable that, with no further information, one can solve only for u, the 

fraction of the surface covered with "holes." If one accepts the value derived for the 

asymmetry factor g that results from the single-particle phase function suggested 

above: namely, g = 0.04, one can solve for n o  and P(77'), obtaining wo = 0.46 

and P(77O) = 0.44, a result that is in remarkably good agreement with the value 

obtained by means of the phase function defined in Eq. (34). (Note that g alone 

does not constrain P, so a circular argument is not being invoked.) If the geometric 

albedo p and multiple-scattering factor Q (the ratio of multiply to singly scattered 

light a t  zero phase angle) of the body are also known, as is the case for Mercury (for 

which p = 0.13 and Q = 0.23), one can not only derive additional information but 

can also check some of the conclusions. Unfortunately, the integrated-brightness 

data for Mercury are very noisy, particularly when Q < 20'. Therefore, use has 

instead been made of the much less noisy data for the Moon (Rougier 1933), which 

are almost indistinguishable. Now 

and 

Lf Jo  

where p l  is the geometric albedo of a single particle and pnr is the multiple-scattering 

contribution to the geometric albedo. From Eq. (42), one can calculate that P(Oo) = 
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0.89, which agrees remarkably well with the value of B above. Inserting = 0.46 in 

Eq. (44), one finds that pM = 0.024, a value that is certainly within the observational 

error of p .  

Although it is true that, by analyzing the disk-resolved brightness, disk-inte- 

grated brightness, and microwave analog measurements, an internally consistent 

picture of Mercury’s light-scattering properties has been arrived at using Lumme 

and Bowell’s model, a caveat is in order: Disk-resolved photometry is available at 

only one phase angle, and use has been made of several approximations for the true 

radiative transfer process in a rough regolith made up of closely packed particles. 

This situation, of course, violates the requirements of classical radiative transfer 

theory and, therefore, the corrections for multiple scattering could be prone to error. 

4.2.  Disk-Integrated Data 

An integral phase curve of Mercury derives from Danjon (1949), and is con- 

strained to have a geometric albedo of 0.14. A comparison of Hapke’s model with 

the data is given in Fig. 4a; a three-term Legendre expansion was used for p(cr).  

Because of the noisiness of Danjon’s data, Lumme and Bowell have chosen to fit 

whole disk photometry of the Moon, as mentioned above; the fit is shown in Fig. 4b. 

Phase-curve data for asteroids derive from the following sources: 24 Themis, 

pertaining to  brightness averaged over rotation (Harris et al. 19S9a); 44 Nysa, 

mean brightness (Harris et al. 19S9b); 69 Hesperia, brightness at primary maximum 

(Poutanen et al. 1985); 82 Alkmene, maximum brightness (Harris et al. 1984b); 

133 Cyrene, maximum brightness (Harris et al. 1954a); 419 Aurelia, mean bright- 

ness (Harris and Young lSS9); and 1862 .4pollo, masiiiium brightness (Harris et al. 

1987). 

For the integral phase curves of the asteroids, the Henyey-Greenstein expression 

for p ( a )  given by Eq. ( 6 )  was used. Then !€‘(cy) contains five parameters: w, Bo, h ,  6 

and 8. Examples of fits of the model to observed photometric data on various bodies 

are shown in Figs. 5a through l la.  The fits were made by trial-and-error variation of 

the five parameters. Parameter values for the fitted curves are given in Table IV. In 
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almost all cases, the goodness of fit is consistent with the quality of the observations. 

An exception, however, is 1862 Apollo, whose phase curve was most likely distorted 

both by large changes in the amplitude and shape of the lightcurve with increasing 

phase angle and by changes in aspect angle during the long intervals spanned by 

the observations. 

In Lumme and Bowell (1981b), there was discussion of the indeterminacy of 

model parameters, in particular the roughness p and the asymmetry factor g. It was 

found, however, that mean values of the volume density D and surface roughness 

sufficed to represent the entire dataset of 74 asteroid phase curves, all of which could 

be well fitted by varying only the multiple-scattering factor Q. In accordance with 

the rather similar findings given in Section 3.3 of this paper, and adding the quantity 

c to parametrize the opposition spike, least-squares fits of Eq. (39) were made to the 

asteroid datasets (in the relative sense, to  give equal weight in magnitude space). 

Fitted phase curves are also shown in Figs. 5b through l l b ,  and the resulting values 

of H ,  Q, and c ,  together with the rms magnitude residuals, are given in Table V. 

Most of the fits are very good, and are comparable with those from Hapke’s 

model, as can be seen from values of the rms residuals in Tables IV and V. Only 

in the case of 419 Aurelia’s phase curve, which has a markedly less pronounced 

opposition effect than those of the other bodies considered, is there a systematic 

run of magnitude residuals that indicates a slight failure of Lumme and Bowell’s 

model, at least in the three-parameter form used here. In Hapke’s model, Aurelia’s 

small opposition effect is accounted for by a small value of Bo and a large value of 

6 (cf. Table IV). However, in Lumme and Bowell’s model, an improvement can be 

made by increasing the volume density D. From the values of c one cannot uniquely 

determine the fractional volume of crystals v, Eq. (31), because geometric optics does 

not provide a means of estimating the brightness of a crystal at a = 0’. However, 

a crude estimate can be made because one can be almost certain that A 2 10 when 

v 5 c/(10 - 9c) (Muinonen et al. 1988). This implies that an admixture of just a 

few percent of material in the form of crystals could explain the observed opposition 

spike.. 
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5. COMPARISON, CONTRAST, AND FUTURE WORK 

Although the mathematical formalisms of the two models are somewhat dif- 

ferent, both rest on similar assumptions. The major difference is in the treatment 

of roughness. In Lumme and Bowell's model, roughness affects only the single- 

scattering terms, thus implicitly assuming that the major contribution to  shadow- 

ing occurs on scales on the order of that of the extinction length-a few particle 

diameters. In Hapke's model, by contrast, roughness affects both the single- and 

multiple-scat tering terms, thus assuming that shadowing is important on all scales. 

Lumme and Bowell's model overestimates the brightness for surfaces of low albedo, 

and is most nearly exact for high-albedo surfaces; whereas Hapke's model is more 

correct for surfaces of low albedo, and underestimates the brightness for high-albedo 

surfaces. 

In both Hapke's model and Lumme and Bowell's model, it is agreed that the 

classical opposition effect at phase angles 2" ,S Q 6 7" is caused by mutual shad- 

owing. Hapke's model achieves a narrow opposition effect by taking account of the 

effects of particle size distribution and predicts lunar soil porosities consistent with 

those measured for Apollo samples (Hapke 19S6). Lumme and Bowell's model leads 

to volume densities that are typical of those seen in particulate laboratory samples 

(Lumme et al. 19SO). 

Another difference between the two models as presented here is the parametri- 

zation of the newly discovered opposition spike. Hapke allows the amplitude of 

the opposition effect Bo to  exceed unity. Lumme and Bowell are convinced that 

the opposition spike is caused by the presence of crystalline particles, which act as 

retroreflectors. To account for the effect in their model, the single-particle phase 

function is modified. 

In both models, the parameters in the mathematical espressions for the geo- 

metric albedo and integral phase function can be associated with physical properties 

of asteroid surfaces, such as porosity, roughness, and the light-scattering properties 

of individual soil particles. Thus, we may hope to obtain information about asteroid 
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surfaces from observations of the integral brightnesses. For instance, in the original 

formulation of Lumme and Bowell’s model, the opposition effect was taken to  be 

controlled by porosity and the linear part of the phase curve by roughness. Un- 

fortunately, we now realize that, at the present state of development of the models 

(c. 1988), unique values of the parameters cannot be determined because different 

parameters may have similar effects on the phase curves (cf. Domingue and Hapke 

1988; Helfenstein and Veverka 1988). Hence, the associated physical properties of 

asteroid surfaces cannot be assigned with any confidence. If the models are to  be 

fully useful, a major task for the future will be to  find ways of constraining the 

parameters that will allow unique fits to observational data. 

Other important tasks for the future will be to generalize the classical radia- 

tive transfer theory to include the effects of (1) a statistically rough upper boundary 

instead of smooth, plane-parallel geometry; (2) the conditional propagation proba- 

bility for a photon whose entire history is known (this becomes important in close 

packing); (3) a discrete, finite-sized, and closely packed medium, rather than the 

continuous medium required by classical theory. First steps towards solving these 

questions have been undertaken by Muinonen et al. (1988) and Peltoniemi et al. 

(1988). 

ACKNOWLEDGMENTS 

EB’s funding derives from NASA Grant NSG-7500 and from the Lowell Ob- 

servatory endowment. BH’s and DD’s research is supported by a grant from the 

Planetary Geology and Geophysics Program, Solar System Exploration Division, 

of NASA. AWH has been funded at the Jet Propulsion Laboratory under contract 

from NASA. 

REFERENCES 

Bowell, E., A. W. Harris, and K. Lumme (1989). A two-parameter magnitude 

system for asteroids. To be submitted to Icarus. 



Page 25 

Bowell, E., and K. Lumnie (1979). Colorimetry and magnitudes of asteroids. In 

Asteroids (T. Gehrels, Ed.), pp. 132-169. University of Arizona Press, Tucson. 

Buratti, B. J. (1983). Photometric Properties of Europa and the Icy Satellites of 

Saturn. Ph.D. thesis, Cornell University, Ithaca, New York. 

Buratti, B. J. (1985). Applications of a radiative transfer model to bright icy satel- 

lites. Icarus 61, 208-217. 

Clark, R. N., I(. S. Kierein, and G.  A. Swayes (1988). Esperimental verification 

of the Hapke reflectance theory. 1. Computation of reflectance as a function of 

grain size and wavelength based on optical constants. In press. 

Danjon, A. (1949). PhotomCtrie et colorimCtrie des planhtes Mercure et Vdnus. 

Bull. Astron. 14, 315-345. 

Domingue, D., and B. Hapke (1958). Fitting theoretical photometric functions to 

asteroid phase curves. Submitted to Zcarus. 

Gehrels, T. (1979). Editor, Asteroids, 1181 pp., University of Arizona Press, Tucson. 

Giese, R. H., K. Weiss, R. H. Zerull, and T. Ono (1978). Large fluffy particles: 

A possible explanation of the optical properties of interplanetary dust. Astron. 

Astrophys. 65, 265-272. 

Goguen, J. (19S1). A Theoretical and Experimental Investigation of the Photometric 

Functions of Particulate Surfaces. Ph.D. thesis, Cornell University, Ithaca, New 

York. 

Hapke, B. (1981). Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. 

Res. 86, 3039-3051. 

Hapke, B. (1984). Bidirectional reflectance spectroscopy. 3. Correction for macro- 

scopic roughness. Zcarus 59, 41-59. 

Hapke, B. (1986). Bidirectional reflectance spectroscopy. 4.  The extinction coeffi- 

cient and the opposition effect. Icarus 67, 264-280. 

Hapke, B. and E. Wells (1991). Bidirectional reflectance spectroscopy. 2. Experi- 

ments and observations. J. Geophys. Res. 86, 3055-3060. 

Harris, A. W., M. Carlsson, J. W. Young, and C.-I. Lagerkvist (1984a). The 



Page 26 

lightcurve and phase relation of the asteroid 133 Cyrene. Icarus 58, 377-382. 

Harris, A. W., J. W. Young, F. Scaltriti, and V. Zappal& (1984b). Lightcurves and 

phase relations of the asteroids 82 Alkmene and 444 Gyptis. Icarus 57, 251-258. 

Harris, A. W., J. W. Young, J. Goguen, H. B. Hammel, G. Hahn, E. Tedesco, and 

D. J. Tholen (1987). Photoelectric lightcurves of the asteroid 1862 Apollo. Icarus 

70,  246-256. 

Harris, A. IV., and J. W. Young (1989). Photoelectric lightcurves of asteroids: 1980 

observations from Table Mountain Observatory. To be submitted to  Icarus. 

Harris, A. W., J. W. Young, E. Bowell, L. J. Martin, R. L. Millis, M. Poutanen, F. 

Scaltriti, V. Zappal&, H. J. Schober, H. Debehogne, and K. W. Zeigler (1989a). 

Photoelectric observations of asteroids 3, 24, 60, 261, and 863. Icarus, in press. 

Harris, A. W., J. W. Young, and L. Contreiras (1989b). Paper reporting photometry 

of 44 Nysa and 64 Angelina. To be submitted to Icarus. 

Helfenstein, P. (1986). Derivation and Analysis of Geological Constraints on the 

Emplacement and Evolution of Termins on Ganymede from Applied Differential 

Photometry. Ph.D. thesis, Brown University, Providence, Rhode Island. 

Helfenstein, P. (1988). The geological interpretation of photometric surface rough- 

ness. Icarus 73, 462-481. 

Helfenstein, P., and J. Veverka (1987). Photometric properties of lunar terrains 

derived from Hapke’s equation. Icarus 72, 342-357. 

Helfenstein, P., and J. Veverka (1988). Physical properties of asteroid surfaces 

from photometric analysis. In Asteroids I1 (R. P. Binzel, T. Gehrels, and M. S. 

Matthews, Eds.), pp. XXY--XYX. University of Arizona Press, Tucson. 

Irvine, W. (1966). The shadowing effect in diffuse reflectance. J. Geophys. Res. 7 1 ,  

2931-2937. 

Karttunen, H.  (1988). Modelling asteroid brightness variations. I. Numerical meth- 

ods. Astron. Astrophys., in press. 

Karttunen, H., and E. Bowell (1988). Modelling asteroid brightness variations. 11. 

On the uninterpretability of lightcurves and phase curves. Astron. Astrophys., 



Page 27 

in press. 

Lockwood, G. W., K. Lumme, and D. T. Thompson (1980a). The recent photomet- 

ric variability of Io. Icarzrs 44, 240-248. 

Lockwood, G. W., D. T. Thompson, and I<. Lumme (1980b). A possible detection 

of solar variability: Photometry of Io, Europa, Callisto, and Rhea, 1976-1979. 

Astron. J. 8 5 ,  961-968. 

Lumme, K., and E. Bowell (1981a). Radiative transfer in the surfaces of atmo- 

sphereless bodies. I.' Theory. Astron. J. 86,  1694-1704. 

Lumme, K., and E. Bowell (1981b). Radiative transfer in the surfaces of atmo- 

sphereless bodies. 11. Interpretation of phase curves. Astron. J .  86 ,  1705-1712. 

Lumme, K., and E. Bowell (1985). Photometric properties of zodiacal light particles. 

Icarus 6 2 ,  54-71. 

Lumme, K., E. Bowell, and B. Zellner (1980). Interpretation of laboratory sam- 

ple photometry by means of a generalized radiative transfer theory. Lunar and 

Planetary Science XI,  pp. 637-639. Lunar and Planetary Institute, Houston. 

Lumme, K., and Irvine, W. M. (1982). Radiative transfer in the surfaces of at- 

mosphereless bodies. 111. Interpretation of lunar photometry. Astron. J. 87, 

107G-1082. 

Lumme? I<., H. Karttunen, E. Bowell, and hl. Poutanen (1986). Inversion of asteroid 

lightcurves using spherical harmonics. In Asteroids, Cornets, Meteors 11 (C.-I. 

Lagerkvist, B. A. Lindblad, H. Lundstedt, and 11. Rickman, Eds.), pp. 55-59. 

Uppsala University, Sweden. 

Lumme, K., K. Muinonen, J. Peltoniemi, H. Karttunen, and E. Bowell (1987). A 

possible esplanation for anomalously sharp opposition effects. Bull. A m .  Astron. 

Soc. 19,850. 

Lumme, K., and H. J. Reitsema (1978). Five-color photometry of Saturn and its 

rings. Icarus 33,  288-300. 

Magnusson, P., M .  A. Barucci, J. D. Drummond, K. Lumme, S. J. Ostro, J. $urdej, 

R. C. Taylor, and V. Zappalb (1988). Determination of pole orientations and 



Page 28 

shape parameters of asteroids. In Asteroids I1 (R. P. Binzel, T. Gehrels, and M. 
S. Matthews, Eds.), pp. XXY-XLY. University of Arizona Press, Tucson. 

Marsden, B. G. (19S6). Notes from the IAU General Assembly. Minor Planet Circ. 

Nos. 10193 and 10194. 

Morozhenko, A. V., and E. G. Yanovitsky (1971). Optical properties of the surface 

layer of the Moon. Astron. Zh. 48, 172-183. 

Muinonen, K., K. Lumme, J. Peltoniemi, and W. M. Irvine (1988). Light scattering 

by randomly oriented crystals. Submitted to Appl. Optics. 

Mustard, J. F.,  and C. M. Pieters (1987). Quantitative abundance estimates from 

bidirectional reflectance measurements. Proc. Seventeenth Lunar Sci. Conf., 

Part 2, J .  Geophys. Res. 92, E617-E626. 

Pang, K. D., J. M. Ajello, K. Lumme, and E. Bowell (1983a). Interpretation of 

whole-disk photometry of Callisto and Ganymede. J. Geophys. Res. 88, A569- 

A576. 

Pang, K. D., K. Lumme, and E. Bowell (1951). Microstructure and particulate 

properties of the surfaces of Io and Ganymede: Comparison with other solar 

system bodies. Proc. Lunar Plan. Sci. Conf. 12B, 1543-1353. 

Pang, K. D., J. W. Rhoads, G. A. Hanover, E;. Lumme, and E. Bowell (1983b). 

Interpretation of whole-disk photometry of Phobos and Deimos. J. Geophys. 

Res. 88, 2475-2484. 

Peltoniemi, J., K. Lumme, K. Muinonen, and W. hf. Irvine (1988). Scattering of 

light by stochastically rough particles. Submitted to Appl .  Optics. 

Poutanen, M., E. Bowell, and K. Lumme (1981). A physically plausible ellipsoidal 

model of Hektor? Bull. Am. Astron. SOC. 13, 725. 

Poutanen, M., E. Bowell, L. J. Martin, and D. T. Thompson (1985). Photoelectric 

photometry of asteroid 69 Hesperia. Astron. Astrophys. Suppl. Ser. 61, 291- 

297. 

Rougier, G. (1933). Photomdtrie photodlectrique globale de la Lune. Anq.  Obs. 

Stmsbourg 2, 205-339. 



. 

Page 29 

Shkuratov, Yu. G. (1953). Model of the Heiligenschein of atmosphereless cosmic 

bodies. Astron. Zh. 60,  1005-1005. 

Simonelli, D. P., and J. Veverka, J. (1957). Phase curves of materials on Io: Inter- 

pretation in terms of Hapke’s function. Icarus 68 ,  503-521. 

Smith, B. A., L. A. Soderblom, R. Beebe, D. Bliss, J. M. Boyce, A. Brahic, G. A. 

Briggs, R. H. Brown, S. A. Collins, A. F. Cook 11, S. K. Croft, J. N. Cuzzi, G. E. 

Danielson, hf. E. Davies, T. E. Dowling, D. Godfrey, C. J. Hansen, C. Harris, G. 

E. Hunt, A. Ingersoll, T. V. Johnson, R. J. Krauss, H. Masursky, D. Morrison, 

T. Owen, J. B. Plescia, J. B. Pollack, C. C. Porco, K. Rages, C. Sagan, E. M. 
Shoemaker, L. A. Sromovsky, C. Stoker, R. G. Strom, V. E. Suomi, S. P. Synnott, 

R. J. Terrille, P. Thomas, W. R. Thompson, and J. Veverka (1986). Voyager 2 

in the Uranian system: Imaging science results. Science 233, 43-64. 

Trowbridge, T. S. (1978). Retroreflection from rough surfaces. J .  Opt. SOC. Am.  

68,  1225-1245. 

Veverka, J., P. Helfenstein, B. Hapke, and J. Goguen (1988). Photometry and 

polarimetry of Mercury. In Mercury (C. R. Chapman, Ed.). University of Arizona 

Press, Tucson. In press. 



. 

Page 30 

TABLE I. 
IIAPKE'S INTEGRAL PHASE FUNCTION 

ROUGHNESS CORRECTION FACTOR K(a ,  8) 

a 
("1 0" 10" 20" 30" 40" 50" 60" 

0 

2 

5 

10 

20 

30 

40 

50 

60 

TO 

80 

90 

100 

110 

120 

130 

140 
150 

160 

170 

180 

1 .oo 
1 .oo 
1.00 

1.00 

1 .oo 
1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 
1.00 

1 .oo 
1 .oo 
1 .oo 

1.00 

0.997 

0.994 

0.991 

0.988 

0.986 

0.984 

0.982 

0.9i9 

0.974 

0.96s 

0.959 

0.946 

0.926 

0.894 

0.840 

0.747 
0.590 

0.366 

0.128 

0 

1.00 

0.991 

0.981 

0.970 

0.957 

0.947 

0.938 

0.926 

0.911 

0.891 

0.864 

0.827 

0.777 

0.708 

0.617 

0.503 

0.374 
0.244 

0.127 

0.037 

0 

1.00 

0.984 

0.965 

0.943 

0.914 

0.892 

0.871 

0.846 

0.814 

0.772 

0.719 

0.6.54 

0.575 

0.484 

0.386 

0.290 

0.201 
0.123 

0.060 

0.016 

0 

1.00 

0.974 

0.944 

0.909 

0.861 

0.829 

0.789 

0.748 

0.698 

0.637 

0.566 

0.487 

0.403 

0.320 

0.243 

0.175 

0.117 
0.069 

0.032 

o.oos9 

0 

1.00 

0.961 

0.918 

0.866 

0.797 

0.744 

0.692 

0.639 

0.570 

0.499 

0.423 

0.346 

0.273 

0.208 

0.153 

0.107 

0.070 
0.040 

0.018 

0.0047 

0 

1 .oo 
0.943 

0.881 

0.809 

0.715 

0.644 

0.577 

0.509 

0.438 

0.366 

0.296 

0.231 

0.175 

0.130 

0.094 

0.064 

0.041 
0.023 

0.010 

0.0026 

0 
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TABLE 11. 

FIT TO MARINER 10 DATA 
ALONG MERCURY'S PHOTO Pvl ETRIC 

EQU-4TOR ( p  = 0') 

L U Iv~ h.I E-B OWEL L M 0 DEL : 

80 0.050 0.047 
60 0.046 0.047 
40 0.035 0.038 
20 0.025 0.026 

0 0.011 0.011 
5 0.007 0.006 



TABLE 111. 

FIT TO MARINER 10 DATA 
ALONG A MERIDIAN 

OF MERCURY( X = 50') 

L U kl Ivl E- B O'CV EL L hl 0 DEL : 

0 0.044 0.043 
20 0.041 0.041 
40 0.037 0.038 
60 0.030 0.030 
70 0.023 0.024 
75 0.018 0.021 
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TABLE IV. 
HAPKE'S MODEL: 

PARAMETERS FOR FITTED PHASE CURVES 

rms 

Residual Geometric 
- 

Body w Bo h b e (mag) Albedo 

24 Themis 
44 Nysa 
69 Hesperia 

82 Alkmene 
133 Cyrene 
419 Aurelia 

1862 Apollo 
Mercury' 

0.045 

0.58 

0.154 

0.183 

0.204 

0.204 

0.28 

0.21 

1.6 

0.6 

0.94 

1.4 

1.19 

0.47 

0.98 

1.85 

0.060 

0.0055 

0.036 

0.047 

0.022 

0.030 

0.026 

0.030 

0.40 

0.40 

0.40 

0.28 

0.383 

0.60 

0.325 

0.40 

5 O  

27 

3 5 

5 

10 

25 

2 

20 

0.011 

0.014 

0.017 

0.017 

0.012 

0.011 

0.042 

0.12 

0.061 

0.492 

0.147 

0.138 

0.21 

0.044 

0.21 

0.14 

'A three-term Legendre polynomial was used for p ( a )  [cf. Eq. (5)] with c = 0.4. 
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TABLE V. 
LUM h1 E- B OJVELL M 0 DEL : 

CONSTRAINED(0 5 c 5 1) LEAST-SQUARES FITS 
T O  PHASE-CURYE DATA 

rms 
Body H Q C Residual 

(mag) (mag) 

23 Themis 
44 Nysa 
69 Hesperia 
82 Alkmene 

133 Cyrene 
419 Aurelia 

1862 Apollo 
Moon 

7.097 
6.S-43 
7.054 
7.77s 
7.763 
8.438 

16.232 
-0.089 

0.201 
0.522 

0.240 
0.201 
0.254 
0.170 
0.225 

0.233 

0.000 
0.311 
0.026 
0.469 
0.252 
0.000 
0.000 
0.000 

0.016 
0.024 
0.013 
0.013 
0.007 
0.028 

0.050 
0.023 
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FIGURE CAPTIONS 

Figure 1. The single-particle phase function P(a). Intensity (arbitrary units) is 

plotted as a function of scattering angle (= 180" - a )  for four nonspherical particles 

(Giese et  al. 1978). The fitted curve is from Eq. (27). 

Figure 2. Fits to  disk-resolved photometry of Mercury using Hapke's model. (a) Re- 

flectance as a function of longitude along the photometric equator. (b) Reflectance 

as a function of latitude along the meridian X = 50". 

Figure 3. As Fig. 2, using Lumme and Bowell's model. 

Figure 4. Fitted phase curves for (a) Mercury, using Hapke's model, and (b) the 

Moon, using Lumme and Bowell's model. 

Figure 5 .  Fitted phase curves for 24 Themis, using (a) Hapke's model, and (b) 

Lumme and Bowell's model. 

Figure 6. As Fig. 5 ,  for 44 Nysa. 

Figure 7. As Fig. 5, for 69 Hesperia. 

Figure 8. As Fig. 5, for 82 Alkmene. 

Figure 9. As Fig. 5 ,  for 133 Cyrene. 

Figure 10. As Fig. 5, for 419 Aurelia. 

Figure 11. As Fig. 5 ,  for 1862 Apollo. 
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